爆炸载荷作用下预制孔板架结构响应特性仿真研究

龚小康, 王兴, 陈军, 姜文健, 刘洁

装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 8-15.

PDF(2056 KB)
PDF(2056 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 8-15. DOI: 10.7643/ issn.1672-9242.2025.12.002
武器装备

爆炸载荷作用下预制孔板架结构响应特性仿真研究

  • 龚小康, 王兴, 陈军, 姜文健, 刘洁
作者信息 +

Simulation on Response Characteristics of Prefabricated Orifice Frame Structures under Blast Loads

  • GONG Xiaokang, WANG Xing, CHEN Jun, JIANG Wenjian, LIU Jie
Author information +
文章历史 +

摘要

目的 研究有孔洞缺陷的板架结构在爆炸载荷作用下的毁伤特性,为舰船等装备结构设计提供参考。方法 以某典型板架结构作为研究对象,开展爆炸载荷作用下预制孔板架结构动态响应数值仿真研究,分析战斗部长径比、炸药当量、比例距离对预制孔板架结构毁伤模式、残余孔洞直径的影响规律。结果 相同炸药当量和正侵彻爆距的情况下,圆柱形装药长径比在1︰4~4︰1时,炸药长度越小,造成预制孔板架结构的毁伤程度越大。预制孔板架结构在爆炸载荷作用下的毁伤模式可划分为3个级别,长径比分别为1︰1和3︰1时,造成预制孔板架结构毁伤模式Ⅰ(仅底板向后隆起)和毁伤模式Ⅱ(底板撕裂成花瓣状)的临界比例距离分别为0.44、0.2,造成预制孔板架结构毁伤模式Ⅱ和毁伤模式Ⅲ(底板沿骨材边界撕裂)的临界比例距离分别为0.33、0.17。结论 该研究结果为舰船等装备结构设计提供了参考依据。

Abstract

The work aims to study the damage characteristics of plate frame structures with preexisting hole defects under blast loads, to provide references for the structural design of equipment such as ships. With a typical plate frame structure as the research object, a numerical simulation was carried out to the dynamic response of the prefabricated orifice frame structure under blast loads. The effects of the length-to-diameter ratio of the warhead, the explosive equivalent, and the proportional distance on the damage mode and the residual hole diameter of the prefabricated orifice frame structure were analyzed. Under the same explosive equivalent and the same positive penetration blast distance, when the length-to-diameter ratio of the cylindrical charge was within the range of 1:4 to 4:1, the smaller the length of the explosive, the greater the damage degree to the prefabricated orifice frame structure. The damage modes of the prefabricated orifice frame structure under blast loads were divided into three levels. When the length-to-diameter ratios were 1:1 and 3:1, the critical proportional distances for causing damage mode I (only the bottom plate bulges backward) and damage mode II (the bottom plate tears into petal shapes) of the prefabricated orifice frame structure were 0.44 and 0.2, respectively. The critical proportional distances for causing damage mode II and damage mode III (the bottom plate tears along the bone material boundary) were 0.33 and 0.17, respectively. These study findings provide references for the structural design of equipment such as ships.

关键词

爆炸载荷 / 板架结构 / 预制缺陷 / 损伤规律 / 数值仿真 / 毁伤模式

Key words

blast load / plate frame structure / prefabrication defect / damage law / numerical simulation / damage mode

引用本文

导出引用
龚小康, 王兴, 陈军, 姜文健, 刘洁. 爆炸载荷作用下预制孔板架结构响应特性仿真研究[J]. 装备环境工程. 2025, 22(12): 8-15 https://doi.org/10.7643/ issn.1672-9242.2025.12.002
GONG Xiaokang, WANG Xing, CHEN Jun, JIANG Wenjian, LIU Jie. Simulation on Response Characteristics of Prefabricated Orifice Frame Structures under Blast Loads[J]. Equipment Environmental Engineering. 2025, 22(12): 8-15 https://doi.org/10.7643/ issn.1672-9242.2025.12.002
中图分类号: O383.3   

参考文献

[1] 刘江涛. 船舶板架结构低噪声优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2019.
LIU J T.Low Noise Optimization Design of Ship Plate Frame Structure[D]. Harbin: Harbin Engineering University, 2019.
[2] 王鹏昊. 板架结构在冲击爆炸作用下的可靠性分析[D]. 哈尔滨: 哈尔滨工程大学, 2011.
WANG P H.Reliability Analysis of Plate Frame Structure under Impact and Explosion[D]. Harbin: Harbin Engineering University, 2011.
[3] 叶墡君. 高速弹体对舰船空间板架结构侵彻规律研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
YE S J.Study on Penetration Law of High-Speed Projectile into Ship Space Plate Structure[D]. Harbin: Harbin Engineering University, 2020.
[4] 何力, 程远胜. 考虑声辐射特性的船舶板架结构动力优化设计[J]. 中国舰船研究, 2011, 6(5): 32-36.
HE L, CHENG Y S.Structural Dynamic Optimization of Grillage Structures Considering Sound Radiation Characteristic[J]. Chinese Journal of Ship Research, 2011, 6(5): 32-36.
[5] 北京工业学院八系. 爆炸及其作用[M]. 北京: 国防工业出版社, 1979: 400-520.
Eighth Department of Beijing Institute of Technology. Blast and Effects[M]. Beijing: National Defense Industry Press, 1979: 400-520.
[6] HENRYCH J.The Dynamics of Explosion and Its Use[M]. New York: Elsevier Scientific Publishing Company, 1979.
[7] 邓贵德, 郑津洋, 陈勇军, 等. 两种典型形状装药的近场爆炸载荷研究[J]. 解放军理工大学学报(自然科学版), 2010, 11(4): 462-467.
DENG G D, ZHENG J Y, CHEN Y J, et al.Near-Field Blast Loadings form Explosion of Two Typically Shaped Charges[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(4): 462-467.
[8] 李金河, 汪斌, 王彦平, 等. 不同装药形状TNT水中爆炸近场冲击波传播的实验研究[J]. 火炸药学报, 2018, 41(5): 461-464.
LI J H, WANG B, WANG Y P, et al.Experimental Study on Near-Field Shock Wave Propagation of Underwater Explosion of TNT with Different Charge Shapes[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 461-464.
[9] 马珊珊, 张跃跃, 张会锁, 等. 装药形状对冲击波超压峰值的影响[C]//首届兵器工程大会论文集, 重庆:[出版者不详] , 2017.
MA S S, ZHANG Y Y, ZHANG H S, et al.The Influence of Charge Shape on the Peak of Shock Wave Overpressure[C]//Proceedings of the First Ordnance Engineering Conference. Chongqing:[s. n.] , 2017.
[10] 刘文祥, 张德志, 钟方平, 等. 球形和等长径圆柱装药在爆炸近区内载荷差异的试验研究[J]. 爆炸与冲击, 2013, 33(3): 330-336.
LIU W X, ZHANG D Z, ZHONG F P, et al.Blast Loading Difference between Spherical Charge and Cylin-Drical Charge with Length Equal to Diameter at Small Distances[J]. Explosion and Shock Wave, 2013, 33(3): 330-336.
[11] 甘露, 宗周红. 装药形状对爆炸作用下钢桥面板损伤的影响研究[J]. 中国公路学报, 2024, 37(5): 80-93.
GAN L, ZONG Z H.Investigation of the Influences of Explosive Shapes on the Damage of Steel Bridge Decks[J]. China Journal of Highway and Transport, 2024, 37(5): 80-93.
[12] GAN L, ZONG Z, GAO C, et al.Influence of Shape of Cuboid Explosives on Response of Plates Subjected to Blast Loads[J]. Thin-Walled Structures, 2022, 174: 109077.
[13] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究[J]. 振动与冲击, 2013, 32(14): 77-81.
WU L J, ZHU X, HOU H L, et al.Simulations for Damage Modes of a Stiffened Plate Subjected to Close-Range Air-Blast Loading[J]. Journal of Vibration and Shock, 2013, 32(14): 77-81.
[14] 候俊亮, 蒋建伟, 门建兵, 等. 预制孔靶板在爆炸冲击波载荷作用下的动态响应[J]. 爆炸与冲击, 2013, 33(6): 662-666.
HOU J L, JIANG J W, MEN J B, et al.Dynamic Response of Thin Plate with Holes under Blast Loading[J]. Explosion and Shock Waves, 2013, 33(6): 662-666.
[15] 侯俊亮, 蒋建伟, 门建兵, 等. 不同形状装药爆炸冲击波场及对靶板作用效应的数值模拟[J]. 北京理工大学学报, 2013, 33(6): 556-561.
HOU J L, JIANG J W, MEN J B, et al.Numerical Simulation of Explosion Shock Wave Fields and Effects on Target Plates of Different Shaped Charges[J]. Beijing Institute of TechnologyUniversity Journal, 2013, 33(6): 556-561.
[16] 王琰, 蒋海燕, 韩璐, 等. 近距爆炸装药形状对板架结构的损伤规律研究[J]. 兵器装备工程学报, 2024, 45(4): 42-50.
WANG Y, JIANG H Y, HAN L, et al.Study on the Damage Law of the Shape of the Near-Rang Explosive Charge on the Plate Structure[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4): 42-50.
[17] 李宝岩, 夏军, 邢启明. 浅析装药形状对金属材料接触爆破效果的影响[J]. 采矿技术, 2018, 18(5): 137-139.
LI B Y, XIA J, XING Q M.Influence of Charge Shape on Contact Blasting Effect of Metal Materials[J]. Mining Technology, 2018, 18(5): 137-139.
[18] 邓贵德, 孙亮, 郑津洋, 等. 两种典型形状装药下抗爆圆柱筒体动力响应的比较分析[C]//第七届全国工程结构安全防护学术会议论文集. 宁波: 宁波大学, 2009.
DENG G D, SUN L, ZHENG J, et al.Comparative Analysis of Dynamic Responses of Explosion-resistant Cylindrical Bodies under Two Typical Shape Charges[C]//Proceedings of the 7th National Work Conference Academic Conference on Structural Safety Protection. Ningbo: Ningbo University, 2009.
[19] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式[J]. 爆炸与冲击, 2012, 32(4): 368-375.
CHEN C H, ZHU X, HOU H L, et al.Deformation and Failure Modes of Clamped Square Plates under Close-Range Air Blast Loads[J]. Explosion and Shock Waves, 2012, 32(4): 368-375.
[20] 陈长海, 朱锡, 候海量, 等. 近距空爆载荷作用下双层防爆舱壁结构抗爆性能仿真分析[J]. 海军工程大学学报, 2012, 24(3): 26-33.
CHENG C H, ZHU X, HOU H L, et al.Numerical Analysis of Blast Resistance of Double-Layer Bulkhead Structures Subjected to Close-Range Air Blast[J]. Journal of Naval University of Engineering. 2012, 24(3): 26-33.
[21] RAMEZAN A, MOHSEN F.Blast Wave Parameters Assessment at Different Altitude Using Numerical Simulation[J]. Eng Env Sci, 2010, 34: 25-41.
[22] CHAPMAN T C, AROS T, SMITH P D.Blast Wave Simulation Using AUTODYN2D: A Parametric Study[J]. Impact Engineering, 1995, 16: 777-787.
[23] 辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022.
XIN C L, ZHU X Y, XUE Z Q, et al.Handbook of Common Material Parameters for Finite Element Analysis[M]. 2nd ed. Beijing: China Machine Press, 2022.
辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022.
XIN C L, ZHU X Y, XUE Z Q, et al.Handbook of Common Material Parameters for Finite Element Analysis[M]. Beijing: China Machine Press, 2022.
[24] BIBIANA M LUCCIONI, RICARDO D. Ambrosini Evaluating the Effect of Undrground Explosions on Structures[J]. Mechanical Computational, 2008, XXVII: 1999-2019.
[25] 朱锡, 牟金磊, 王恒, 等. 水下爆炸载荷作用下加筋板的毁伤模式[J]. 爆炸与冲击, 2010, 30(3): 225-231.
ZHU X, MU J L, WANG H, et al.Damage Modes of Stiffened Plates Subjected to Underwater Explosion Load[J]. Explosion and Shock Waves, 2010, 30(3): 225-231.

PDF(2056 KB)

Accesses

Citation

Detail

段落导航
相关文章

/